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Abstract

In this paper, we show how to construct Korovkin systems in spaces of continuous
mappings whose values are (possibly non-convex) sets or more generally (possibly non-
quasiconcave) upper semicontinuous functions. The Korovkin system is constructed from a
given Korovkin system of real functions. Furthermore, we show that any Korovkin system in
the quasiconcave case, augmented by all constant functions, is a Korovkin system for the
general case.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The main topic of this paper is Korovkin-type approximation of continuous
mappings whose values are in a certain space of upper semicontinuous (u.s.c.)
functions. The original theorem by Korovkin [10,11] is the following. Let #([0, 1], R)
be the class of all real continuous functions on [0, 1], and let {7}, be a sequence of
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linear positive operators from %([0,1],R) to %([0,1],R). Then, in order to
conclude that 7,f —f in the supremum norm for all f'e%([0, 1],R), it is enough to
prove convergence for the three functions 1,x,x%. This is, no doubt, a most
remarkable result which has generated a lot of research since its inception. One now
says that 1,x,x* is a Korovkin system for the space %([0,1],R). The reader is
referred to the monograph [1] for an exposition of the theory and many of its
applications.

The theory is essentially concerned with the study of Korovkin systems in contexts
more general than %([0,1],R). In the framework of real continuous functions,
several characterizations of Korovkin systems are known, see e.g. [1,3]. Therefore, it
is natural to investigate whether real Korovkin systems can be used to
construct Korovkin systems for functions with values in more general spaces, such
as locally convex spaces (more generally, locally convex cones [9]) or hyperspaces
(spaces of sets). There are a number of papers where this problem is considered,
e.g. [5,8,15].

A serious limitation of the existing Korovkin theorems for set-valued
mappings since the pioneering work of Vitale ([19], see also e.g. [4,8,9,15]) is the
requirement that the mappings be convex valued. This was so because those results
were obtained using linear space or special convex cone techniques. However, a
hyperspace containing one non-convex set can never be a convex cone in the
senses of Keimel and Roth (‘locally convex cone’ [9]), of Prolla (‘metric convex cone’
[12,13]), or of Jonasson (‘lattice cone’ [6]), let alone be embeddable into a linear
space.

In [18], Lopez-Diaz and the author have proven a Korovkin-type approximation
theorem for mappings whose values are in a space of u.s.c. functions. That space is
endowed with a special structure that makes it a natural generalization of the
corresponding space of compact (possibly non-convex) sets. Our result shows that
convexity assumptions can be disposed of.

This paper continues that research. By Theorem 3.1 in [18], certain special real
Korovkin systems are useful for constructing set- and function-valued Korovkin
systems. However, since its proof makes an essential use of the special properties, it
remained unclear whether every real Korovkin system could similarly provide a
function-valued Korovkin system. In this paper, that question will be answered in
the affirmative (Theorem 3). Our main tools for that purpose will be a generalization
of the mentioned theorem (Theorem 1) and a recent embedding theorem for the
space of u.s.c. functions under the hypothesis of quasiconcavity, due to the author
[16,17].

This contributes to the understanding of Korovkin systems in the non-linear space
of u.s.c. functions. As a consequence of Theorem 3, we also show the relationship
between Korovkin systems with and Korovkin systems without the hypothesis of
quasiconcavity (or convexity, in the set-valued case): every Korovkin system ¢ for
quasiconcave functions can be made into a Korovkin system for general u.s.c.
functions by adding to it all (non-quasiconcave) constant functions (Theorem 4). It is
shown by an example that ¢ alone need not have the Korovkin property in the
general case.
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2. Preliminaries

Let (E,|| - ||) be a Banach space. Let #” denote the class of all non-empty compact
subsets of E, let 7. be the subclass of convex elements and let B denote the unit ball
of E.

In 2", Minkowski addition and product by a scalar are defined by
K+L={x+y|xeK, yeL}, AK={lx|xeK}.
The Hausdorff metric is defined by
du(K,L) =inf{e>0|K<L+¢B, LcK +¢B}.
The norm or magnitude of Ke A is

1K1 = diu(K, {0}) = max [|x]|

The indicator function and convex hull of K are denoted by Ix and coK,
respectively. The norm of a # -valued mapping is defined by || X||(x) = || X (x)]].

The following function spaces will be considered. We will denote by Z#
(respectively, Z.) the class of all real upper semicontinuous functions from E to
[0, 1] whose maximum is 1 and whose upper level sets are in " (respectively, #").
The upper level sets of A€ Z will be denoted by 4, = {xeE| A(x)=a}, for ae (0, 1],
whereas A4, will denote the closed support of 4. Observe that elements of & are
quasiconcave, that is, A(Ax + (1 — A)y)=min{A4(x),A(y)} for all Z1€[0,1] and
x,yeE.

The quasiconcave envelope of A €% will be denoted by qco 4 (in [18], the notation
co A was used). It is determined by the identities (qco A4), = co A4, for a€ (0, 1], and it
is an element of % .

Operations in & have a levelwise characterization, that is,

(A4), =24, and (A+C),=A,+ C,.

Since one of the distributive laws does not hold in general, & is not a convex cone in
any of the senses mentioned in the introduction.
& can be endowed with a metric d,, defined by

dy (Av C) = Sup dH(Ao:a C(x)'
oe0,1]

(7,dy) is complete [14], but not separable [7].

It is customary to denote by A < C the usual pointwise order A < C, since 4 < C if,
and only if 4, < C, for all «. Observe that the operations in % do not correspond to
the pointwise ones. Recall that % should be considered a superspace of " the
mapping K+ Ix embeds linearly ¢ into % .

From now on Q will denote a compact Hausdorff topological space. If (M, d) is a
metric space, 4(Q, M) will denote the set of continuous mappings from Q to M and
analogously #(Q, M) will denote the set of bounded mappings from Q to M. The
identity mapping of a space will be denoted by id.



P. Teran | Journal of Approximation Theory 127 (2004) 74-82 77

In €(Q,7) we consider the D, metric defined by
Do (X, Y) =sup dy(X(x), Y(x)).
xeQ

For any X e #(Q, 7) we set || X||, = sup,co || Xo||(x).

A mapping T:%4(Q,7)->%(Q,7) will be said to be linear if T(aX +bY) =
aT(X)+ bT(Y), whenever a,b>0 and X, Y €% (Q, ), and it will be called positive
if T(X)<T(Y), whenever X Y. It will be called an Z -operator [18] if there is some
mapping T: % — % such that T(X) = ToX. Observe that #-operators need not be
linear or positive.

These definitions specialize to #"-valued mappings. Then we will naturally speak
of A -operators instead.

Notice that, beyond the formal resemblance, linearity as we have defined it has
striking differences from linearity with respect to the pointwise operations. For
instance, the mapping A+ A2 is linear in our sense. More generally, the same is true
of A ¢oA for any increasing bijection ¢ from [0, 1] to [0, 1].

Let 2, %' be function spaces. A subset # < % will be called a Korovkin system for
an operator T, for mappings from & to &/, if for every sequence T}, : Z — %' of linear
positive operators, convergence 7T,f — Tf in J# entails convergence in all of Z. We
will naturally say that # is a Korovkin system in & when 2 = %'. Constant
functions will be denoted by their only value. An expression like /#x is understood
as the set of all & - x, h ranging over #.

3. Korovkin systems

In this section we will develop the main results of the paper. The first one is an
improvement of Theorem 3.1 in [18] which will be our main tool. Part (iii) of the
theorem and uniform convergence over a parameter set A will not be used in the
sequel. However, we prefer to state the theorem in the same generality as [18,
Theorem 3.1].

Theorem 1. Let Q be a compact Hausdorff topological space, and let ¢ : Q* >R be a
continuous mapping such that ¢(x,x) =0 for all xeQ and ¢(x,y)>0 for all x,yeQ
with x#y. Let ue%. be such that algcu for some a>0. Let
L,,:4Q,7)>%(Q,7), neN, Ae A (A being an index set), be positive linear
operators, such that there exists noeN with
sup [ Lna(u)|ly < 0.
reAn=ng
Let T:6(Q,7)>%(Q,F) be an F-operator.
Then, the following conditions are equivalent:

(1) Do (Lys(X), T(X)) >0 uniformly in e A for all X €6 (F),

(1) Do (Lyi((x,)u), T(P(x,-)u)) =0 uniformly in e A for all xeQ,
D, (L, ;(A),T(A))—0 uniformly in A€ A for all A F,
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(i) supye (Lo ((x, Vi)l (x) =0 uniformly in ie A,
D, (Ly;(A), T(A))—0 uniformly in A€ A for all Ac F.

Proof. The proof is similar to that of Theorem 3.1 in [18]. Let us just underline the
differences: E substitutes for R? and a general u replaces Iz. The former is actually
immaterial to the method of the proof.

As to the latter, define

d,(4,C) =inf{e>0|A=C + eu,Cc A + cu}.
It is readily seen that d, is a metric. Actually, d., and d, are uniformly equivalent,
since

AcCHeu= AcC +e|lupl|lp and AcC+elp= Ac<C+ea'u.

Define accordingly
Dy(X,Y) = sup dy(X(x), Y(x)) and [ X|lg = Du(X,I(0)).

xeQ

By inspection of the proof of Theorem 3.1 in [18], we conclude that just two
inequalities must hold for the method to be applicable to D,,.

The first one is D,(fu,gu)<||f —gl|, - |luol| for f,ge®(Q,R"), which
is easy to prove. (In [18] one had D. (fI,glg) = ||f —gl|,, but the former is
enough.)

The second one is that || T(X) ||, <||T(u)||% - || X||¢ for any linear positive operator
T and X €%(Q, 7). In order to prove this, notice that

XellX|lg-u= TX)<|X]lg - T(u) <Xl - [|1T(w)|lg - u
and
Loy X 4[| X|lg - u = Iy
= T(Ijoy) = T(X) + | X1l - T(w) = T(X) + [|X1lg - 1T @)l - .
whence

1T (X)

v = Du(X, Lioy) <[ X|J5 - [1T ()| Ig-

With those inequalities to hand, one can adapt the aforementioned proof so as to
show the equivalence of

(i) Ly(X)—>T(X) for all Xe¥(Q,7),
(i) Lys(p(x, )u)—> T(P(x,-)u) for all xeQ, and L, ,(4) - T(A) for all Ae 7,
(i) Supyeg 1(Lus($(x, )0))ol () 0, and L, ,(4) > T(4) for all A€,

where convergence is uniform in A€ A and in the D, sense, which is of course the
same as D, convergence by the uniform equivalence of the metrics. [

The other main tool we will use is the following embedding of # into a space of
continuous functions [16, Corolario 1.1.6; 17, Theorem 6].
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Lemma 2. There exist a compact Hausdorff space I and a mapping h: 7 .—%(I',R)
such that:

(1) h is a linear isometry with respect to do, and || - ||,

(i) h is a homomorphism of sup-semilattices (and so is positive),
(i) h(l5) = 1,
@iv) h(F.) — h(ZF.) is dense and order-dense in €(I',R).

We can finally prove our result on Korovkin systems in the space ¢(Q, 7).

Theorem 3. Assume that Q is compact metric. Let # <%(Q,R") be a Korovkin
system for id in €(Q,R). Let ue F . be such that alg <u for some a>0. Let T be an F -
operator such that T (u) = u. Then, (#u) VU F is a Korovkin system for T in €(Q,F).

Proof. By Lemma 2, ¥(Q,%.) embeds into the Banach lattice ¢(Q,%(I',R)).
Besides, one checks routinely that the embedding f+f - h(u) from %(Q,R) to
€(Q,¢4(I',R)) is linear and |f -h(u)| =|f] h(u), ie. it is a vector lattice
homomorphism. Notice, for the latter identity, that s(u) >0 by the positivity of &
and the fact that Iyo, cu.

By the universal Korovkin-type property [1, Theorem 3.2.1], # is then a
Korovkin system for id, for mappings from % (Q,R) to €(Q,%(I',R)).

Observe that d (au,bu) = |a —b| - ||ug|| and 0<a<b = aucbu, so that the
mapping aeRT+—a-u is a monotone linear homeomorphism. Therefore
%(Q,R"-u) and %(Q,R") can be identified as far as we are concerned. We
deduce that #u is a Korovkin system for id, for mappings from % (Q,R" - u) to
CQ,F.).

We are now ready to prove that (#u)uZ is a Korovkin system for T in €(Q, 7).
Assume that T,(fu) - T(fu) and T,(4) > T(A) for all f e # and Ae #. We have to
prove that indeed T,,(X)— T(X) for all X e4(Q, 7).

Begin by noting that T'( fu) = fu for all f € #. Indeed, for any yeQ,

T(f () = lim T,(£ () = £(3) lim T,(u) =£(0) T () = f ()u

by the linearity of 7, and the convergence for constant functions. Now T is an % -

operator, so that T'(fu)(y) = T(f(y)u)(y) =f(y)u for all yeQ, ie. T(fu) = fu.
Denote the metric in Q by p. Since the mappings p(x,-) are continuous for all

xeQ, the Korovkin property of s u implies that
Ta(p(x, - Ju) = p(x,)Ju

for each xe Q. Here it is very important to realize that we have to prove that all
T, (p(x,)u) take on values in Z ., otherwise the last step would not be valid, as #u
need not have the Korovkin property for general % -valued mappings (see Example
1). In order to do so, notice that

Ty(p(x, Ju) = T, <Z m (. »u) =3 (Tl )
i=1 —

i=1
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by the quasiconcavity of the values of p(x,-)u and the linearity of T7,. Now,
by an application of the Artstein—Hansen convexification lemma [2] to each upper
level set,

m

> 7 (3, ) () > mico Talp(x, ) ()

i=1
for each ye Q. That is, qco T,,(p(x, -)u) = T,(p(x,-)u). (One just needs the existence
of the limit in some Hausdorff topology, but let us be precise and say that it is so in
the weak topology generated by the mappings 4+ A, for ae (0, 1].)

Finally, p fulfils the assumptions on ¢ in the statement of Theorem 1, we have

shown that

Tolp(x,-Ju) = p(x,-Ju = T(p(x, -Ju)

T
and by hypothesis T,(4)— T(A4) for all AeZ. It follows then, from implication
(if) = (i), that T,,(X) - T(X) for all X e%(Q, 7). The proof is complete. [

Notice that it is not really necessary to assume that Q is metric: only the existence
of a mapping ¢ as in the statement of Theorem 1 is needed. Besides, the hypothesis
T (u) = u can clearly be slightly relaxed to Tu = Au for some 1>0.

Pushing the same ideas just a bit further, one can ascertain the connection between
Korovkin systems in (2, %) and Korovkin systems in ¢(Q, 7).

Theorem 4. Let ¢ be a Korovkin system for id in €(Q, F.). Then, § OF is so in
€(Q,7). Conversely, if & is a Korovkin system for id in €(Q,7), then &' =
{qeo X | X e P} is s0 in €(Q,F ).

Proof. The proof of the first claim is easy. For if ¢ has the Korovkin property in
€(Q,7), convergence of a sequence of linear positive operators in ¢ implies
convergence in #u, where # and u are as in Theorem 3. But (#u)U.Z being a
Korovkin system in ¢ (Q, %), it is clear that # U Z is so also.

As to the second claim, we know from the proof of Theorem 3 that a linear
operator from %(Q,%.) to €(Q2,%) actually takes on values in ¢(Q, 7). Then,
qco X is just the restriction of X to €(Q, #.). It follows that ¥’ has the Korovkin
property. [

Example 1. It is easy to show that ¢ alone does not have the Korovkin property in
the whole of €(Q, #). We can even take # = 4(Q, 7 .). Let T, = qco for all neN
and T =id. But 7,,(X)-» T(X) for any X ¢%(Q, 7).

Theorems 3 and 4 can be particularized to functions whose values are (possibly
non-convex) sets.

Corollary 5. Assume that Q is compact metric. Let # <% (Q,R") be a Korovkin
system for id in €(Q,R). Let Le A be such that aB< L for some a>0. Let S be a A -
operator such that S(L) = L. Then, (#L)u A is a Korovkin system for S in €(Q, 4").
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Besides, if ¢ is a Korovkin system for id in €(Q, 4 ".), then ¢ O A is so in €(Q, A).
Conversely, if & is a Korovkin system for id in €(Q, 4"), then &' = {co X | X e L} is
so in €(Q, A ;).

The proof uses the identification Ke # <« Ix e F.

In [18], we have given a method to show that Korovkin systems for d
convergence are also Korovkin systems for some weaker types of convergence. This
can be used together with the ideas in this paper to extend Theorems 3 and 4 in a
similar way. Details are left to the reader.
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