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Abstract

In this paper, we show how to construct Korovkin systems in spaces of continuous

mappings whose values are (possibly non-convex) sets or more generally (possibly non-

quasiconcave) upper semicontinuous functions. The Korovkin system is constructed from a

given Korovkin system of real functions. Furthermore, we show that any Korovkin system in

the quasiconcave case, augmented by all constant functions, is a Korovkin system for the

general case.
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1. Introduction

The main topic of this paper is Korovkin-type approximation of continuous
mappings whose values are in a certain space of upper semicontinuous (u.s.c.)
functions. The original theorem by Korovkin [10,11] is the following. Let Cð½0; 1�;RÞ
be the class of all real continuous functions on ½0; 1�; and let fTngn be a sequence of
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linear positive operators from Cð½0; 1�;RÞ to Cð½0; 1�;RÞ: Then, in order to
conclude that Tnf-f in the supremum norm for all fACð½0; 1�;RÞ; it is enough to

prove convergence for the three functions 1; x; x2: This is, no doubt, a most
remarkable result which has generated a lot of research since its inception. One now

says that 1; x; x2 is a Korovkin system for the space Cð½0; 1�;RÞ: The reader is
referred to the monograph [1] for an exposition of the theory and many of its
applications.
The theory is essentially concerned with the study of Korovkin systems in contexts

more general than Cð½0; 1�;RÞ: In the framework of real continuous functions,
several characterizations of Korovkin systems are known, see e.g. [1,3]. Therefore, it
is natural to investigate whether real Korovkin systems can be used to
construct Korovkin systems for functions with values in more general spaces, such
as locally convex spaces (more generally, locally convex cones [9]) or hyperspaces
(spaces of sets). There are a number of papers where this problem is considered,
e.g. [5,8,15].
A serious limitation of the existing Korovkin theorems for set-valued

mappings since the pioneering work of Vitale ([19], see also e.g. [4,8,9,15]) is the
requirement that the mappings be convex valued. This was so because those results
were obtained using linear space or special convex cone techniques. However, a
hyperspace containing one non-convex set can never be a convex cone in the
senses of Keimel and Roth (‘locally convex cone’ [9]), of Prolla (‘metric convex cone’
[12,13]), or of Jonasson (‘lattice cone’ [6]), let alone be embeddable into a linear
space.
In [18], López-Dı́az and the author have proven a Korovkin-type approximation

theorem for mappings whose values are in a space of u.s.c. functions. That space is
endowed with a special structure that makes it a natural generalization of the
corresponding space of compact (possibly non-convex) sets. Our result shows that
convexity assumptions can be disposed of.
This paper continues that research. By Theorem 3.1 in [18], certain special real

Korovkin systems are useful for constructing set- and function-valued Korovkin
systems. However, since its proof makes an essential use of the special properties, it
remained unclear whether every real Korovkin system could similarly provide a
function-valued Korovkin system. In this paper, that question will be answered in
the affirmative (Theorem 3). Our main tools for that purpose will be a generalization
of the mentioned theorem (Theorem 1) and a recent embedding theorem for the
space of u.s.c. functions under the hypothesis of quasiconcavity, due to the author
[16,17].
This contributes to the understanding of Korovkin systems in the non-linear space

of u.s.c. functions. As a consequence of Theorem 3, we also show the relationship
between Korovkin systems with and Korovkin systems without the hypothesis of
quasiconcavity (or convexity, in the set-valued case): every Korovkin system J for
quasiconcave functions can be made into a Korovkin system for general u.s.c.
functions by adding to it all (non-quasiconcave) constant functions (Theorem 4). It is
shown by an example that J alone need not have the Korovkin property in the
general case.
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2. Preliminaries

Let ðE; jj 	 jjÞ be a Banach space. Let K denote the class of all non-empty compact
subsets of E; let Kc be the subclass of convex elements and let B denote the unit ball
of E:
In K; Minkowski addition and product by a scalar are defined by

K þ L ¼ fx þ y j xAK ; yALg; lK ¼ flx j xAKg:

The Hausdorff metric is defined by

dHðK ;LÞ ¼ inffe40 j KCL þ eB; LCK þ eBg:

The norm or magnitude of KAK is

jjK jj ¼ dHðK ; f0gÞ ¼ max
xAK

jjxjj:

The indicator function and convex hull of K are denoted by IK and co K ;
respectively. The norm of a K-valued mapping is defined by jjX jjðxÞ ¼ jjXðxÞjj:
The following function spaces will be considered. We will denote by F

(respectively, Fc) the class of all real upper semicontinuous functions from E to
½0; 1� whose maximum is 1 and whose upper level sets are in K (respectively, Kc).
The upper level sets of AAF will be denoted by Aa ¼ fxAE j AðxÞXag; for aAð0; 1�;
whereas A0 will denote the closed support of A: Observe that elements of Fc are
quasiconcave, that is, Aðlx þ ð1� lÞyÞXminfAðxÞ;AðyÞg for all lA½0; 1� and
x; yAE:
The quasiconcave envelope of AAF will be denoted by qco A (in [18], the notation

coA was used). It is determined by the identities ðqco AÞa ¼ coAa for aAð0; 1�; and it
is an element of Fc:
Operations in F have a levelwise characterization, that is,

ðlAÞa ¼ lAa and ðA þ CÞa ¼ Aa þ Ca:

Since one of the distributive laws does not hold in general,F is not a convex cone in
any of the senses mentioned in the introduction.

F can be endowed with a metric dN defined by

dNðA;CÞ ¼ sup
aA½0;1�

dHðAa;CaÞ:

ðF; dNÞ is complete [14], but not separable [7].
It is customary to denote by ACC the usual pointwise order ApC; since ACC if,

and only if AaCCa for all a: Observe that the operations in F do not correspond to
the pointwise ones. Recall that F should be considered a superspace of K: the
mapping K/IK embeds linearly K into F:
From now on O will denote a compact Hausdorff topological space. If ðM; dÞ is a

metric space, CðO;MÞ will denote the set of continuous mappings from O to M and
analogously BðO;MÞ will denote the set of bounded mappings from O to M: The
identity mapping of a space will be denoted by id:
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In CðO;FÞ we consider the DN metric defined by

DNðX ;Y Þ ¼ sup
xAO

dNðXðxÞ;YðxÞÞ:

For any XABðO;FÞ we set jjX jjC ¼ supxAO jjX0jjðxÞ:
A mapping T :CðO;FÞ-CðO;FÞ will be said to be linear if TðaX þ bY Þ ¼

aTðX Þ þ bTðYÞ; whenever a; bX0 and X ;YACðO;FÞ; and it will be called positive

if TðXÞCTðYÞ; whenever XCY : It will be called an F-operator [18] if there is some

mapping T̂ :F-F such that TðXÞ ¼ T̂3X : Observe that F-operators need not be
linear or positive.
These definitions specialize to K-valued mappings. Then we will naturally speak

of K-operators instead.
Notice that, beyond the formal resemblance, linearity as we have defined it has

striking differences from linearity with respect to the pointwise operations. For

instance, the mapping A/A2 is linear in our sense. More generally, the same is true
of A/j3A for any increasing bijection j from ½0; 1� to ½0; 1�:
Let D;D0 be function spaces. A subset HCD will be called a Korovkin system for

an operator T ; for mappings fromD toD0; if for every sequence Tn :D-D0 of linear
positive operators, convergence Tnf-Tf in H entails convergence in all of D: We

will naturally say that H is a Korovkin system in D when D ¼ D0: Constant
functions will be denoted by their only value. An expression like Hx is understood
as the set of all h 	 x; h ranging over H:

3. Korovkin systems

In this section we will develop the main results of the paper. The first one is an
improvement of Theorem 3.1 in [18] which will be our main tool. Part (iii) of the
theorem and uniform convergence over a parameter set L will not be used in the
sequel. However, we prefer to state the theorem in the same generality as [18,
Theorem 3.1].

Theorem 1. Let O be a compact Hausdorff topological space, and let f :O2-R be a

continuous mapping such that fðx; xÞ ¼ 0 for all xAO and fðx; yÞ40 for all x; yAO
with xay: Let uAFc be such that aIBCu for some a40: Let

Ln;l :CðO;FÞ-BðO;FÞ; nAN; lAL (L being an index set), be positive linear

operators, such that there exists n0AN with

sup
lAL;nXn0

jjLn;lðuÞjjCoN:

Let T :CðO;FÞ-CðO;FÞ be an F-operator.

Then, the following conditions are equivalent:

(i) DNðLn;lðXÞ;TðX ÞÞ-0 uniformly in lAL for all XACðFÞ;
(ii) DNðLn;lðfðx; 	ÞuÞ;Tðfðx; 	ÞuÞÞ-0 uniformly in lAL for all xAO;

DNðLn;lðAÞ;TðAÞÞ-0 uniformly in lAL for all AAF;
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(iii) supxAO jjðLn;lðfðx; 	ÞIBÞÞ0jjðxÞ-0 uniformly in lAL;
DNðLnlðAÞ;TðAÞÞ-0 uniformly in lAL for all AAF:

Proof. The proof is similar to that of Theorem 3.1 in [18]. Let us just underline the

differences: E substitutes for Rd and a general u replaces IB: The former is actually
immaterial to the method of the proof.
As to the latter, define

duðA;CÞ ¼ inffe40 j ACC þ eu;CCA þ eug:

It is readily seen that du is a metric. Actually, dN and du are uniformly equivalent,
since

ACC þ eu ) ACC þ ejju0jjIB and ACC þ eIB ) ACC þ ea�1u:

Define accordingly

DuðX ;YÞ ¼ sup
xAO

duðX ðxÞ;YðxÞÞ and jjX jjuC ¼ DuðX ; If0gÞ:

By inspection of the proof of Theorem 3.1 in [18], we conclude that just two
inequalities must hold for the method to be applicable to Du:

The first one is Duð fu; guÞpjjf � gjj
N

	 jju0jj for f ; gACðO;RþÞ; which

is easy to prove. (In [18] one had DNð fIB; gIBÞ ¼ jjf � gjj
N
; but the former is

enough.)

The second one is that jjTðXÞjjuCpjjTðuÞjjuC 	 jjX jjuC for any linear positive operator

T and XACðO;FÞ: In order to prove this, notice that

XCjjX jjuC 	 u ) TðXÞCjjX jjuC 	 TðuÞCjjX jjuC 	 jjTðuÞjjuC 	 u

and

If0gCX þ jjX jjuC 	 u ) If0g

¼ TðIf0gÞCTðX Þ þ jjX jjuC 	 TðuÞCTðXÞ þ jjX jjuC 	 jjTðuÞjjuC 	 u;

whence

jjTðX ÞjjuC ¼ DuðX ; If0gÞpjjX jjuC 	 jjTðuÞjjuC:

With those inequalities to hand, one can adapt the aforementioned proof so as to
show the equivalence of

(i) Ln;lðXÞ-TðX Þ for all XACðO;FÞ;
(ii) Ln;lðfðx; 	ÞuÞ-Tðfðx; 	ÞuÞ for all xAO; and Ln;lðAÞ-TðAÞ for all AAF;
(iii) supxAO jjðLn;lðfðx; 	ÞuÞÞ0jjðxÞ-0; and Ln;lðAÞ-TðAÞ for all AAF;

where convergence is uniform in lAL and in the Du sense, which is of course the
same as DN convergence by the uniform equivalence of the metrics. &

The other main tool we will use is the following embedding of Fc into a space of
continuous functions [16, Corolario 1.1.6; 17, Theorem 6].
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Lemma 2. There exist a compact Hausdorff space G and a mapping h :Fc-CðG;RÞ
such that:

(i) h is a linear isometry with respect to dN and jj 	 jj
N
;

(ii) h is a homomorphism of sup-semilattices (and so is positive),
(iii) hðIBÞ ¼ 1;
(iv) hðFcÞ � hðFcÞ is dense and order-dense in CðG;RÞ:

We can finally prove our result on Korovkin systems in the space CðO;FÞ:

Theorem 3. Assume that O is compact metric. Let HCCðO;RþÞ be a Korovkin

system for id in CðO;RÞ: Let uAFc be such that aIBCu for some a40: Let T be an F-
operator such that TðuÞ ¼ u: Then, ðHuÞ,F is a Korovkin system for T in CðO;FÞ:

Proof. By Lemma 2, CðO;FcÞ embeds into the Banach lattice CðO;CðG;RÞÞ:
Besides, one checks routinely that the embedding f/f 	 hðuÞ from CðO;RÞ to
CðO;CðG;RÞÞ is linear and jf 	 hðuÞj ¼ jf j 	 hðuÞ; i.e. it is a vector lattice
homomorphism. Notice, for the latter identity, that hðuÞX0 by the positivity of h

and the fact that If0gCu:

By the universal Korovkin-type property [1, Theorem 3.2.1], H is then a
Korovkin system for id; for mappings from CðO;RÞ to CðO;CðG;RÞÞ:
Observe that dNðau; buÞ ¼ ja � bj 	 jju0jj and 0papb ) auCbu; so that the

mapping aARþ/a 	 u is a monotone linear homeomorphism. Therefore

CðO;Rþ 	 uÞ and CðO;RþÞ can be identified as far as we are concerned. We

deduce that Hu is a Korovkin system for id; for mappings from CðO;Rþ 	 uÞ to
CðO;FcÞ:
We are now ready to prove that ðHuÞ,F is a Korovkin system for T in CðO;FÞ:

Assume that Tnð fuÞ-Tð fuÞ and TnðAÞ-TðAÞ for all fAH and AAF: We have to
prove that indeed TnðXÞ-TðXÞ for all XACðO;FÞ:
Begin by noting that Tð fuÞ ¼ fu for all fAH: Indeed, for any yAO;

Tð f ðyÞuÞ ¼ lim
n

Tnð f ðyÞuÞ ¼ f ðyÞ lim
n

TnðuÞ ¼ f ðyÞTðuÞ ¼ f ðyÞu

by the linearity of Tn and the convergence for constant functions. Now T is an F-
operator, so that Tð fuÞðyÞ ¼ Tð f ðyÞuÞðyÞ ¼ f ðyÞu for all yAO; i.e. Tð fuÞ ¼ fu:
Denote the metric in O by r: Since the mappings rðx; 	Þ are continuous for all

xAO; the Korovkin property of Hu implies that

Tnðrðx; 	ÞuÞ-rðx; 	Þu
for each xAO: Here it is very important to realize that we have to prove that all
Tnðrðx; 	ÞuÞ take on values in Fc; otherwise the last step would not be valid, as Hu

need not have the Korovkin property for general F-valued mappings (see Example
1). In order to do so, notice that

Tnðrðx; 	ÞuÞ ¼ Tn

Xm

i¼1
m�1rðx; 	Þu

 !
¼
Xm

i¼1
ðm�1Tnðrðx; 	ÞuÞÞ
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by the quasiconcavity of the values of rðx; 	Þu and the linearity of Tn: Now,
by an application of the Artstein–Hansen convexification lemma [2] to each upper
level set,Xm

i¼1
ðm�1Tnðrðx; 	ÞuÞðyÞÞ-mqco Tnðrðx; 	ÞuÞðyÞ

for each yAO: That is, qco Tnðrðx; 	ÞuÞ ¼ Tnðrðx; 	ÞuÞ: (One just needs the existence
of the limit in some Hausdorff topology, but let us be precise and say that it is so in
the weak topology generated by the mappings A/Aa for aAð0; 1�:)
Finally, r fulfils the assumptions on f in the statement of Theorem 1, we have

shown that

Tnðrðx; 	ÞuÞ-rðx; 	Þu ¼ Tðrðx; 	ÞuÞ
and by hypothesis TnðAÞ-TðAÞ for all AAF: It follows then, from implication
ðiiÞ ) ðiÞ; that TnðX Þ-TðXÞ for all XACðO;FÞ: The proof is complete. &

Notice that it is not really necessary to assume that O is metric: only the existence
of a mapping f as in the statement of Theorem 1 is needed. Besides, the hypothesis
TðuÞ ¼ u can clearly be slightly relaxed to Tu ¼ lu for some lX0:
Pushing the same ideas just a bit further, one can ascertain the connection between

Korovkin systems in CðO;FcÞ and Korovkin systems in CðO;FÞ:

Theorem 4. Let J be a Korovkin system for id in CðO;FcÞ: Then, J,F is so in

CðO;FÞ: Conversely, if L is a Korovkin system for id in CðO;FÞ; then L0 ¼
fqco X j XALg is so in CðO;FcÞ:

Proof. The proof of the first claim is easy. For if J has the Korovkin property in
CðO;FcÞ; convergence of a sequence of linear positive operators in J implies
convergence in Hu; where H and u are as in Theorem 3. But ðHuÞ,F being a
Korovkin system in CðO;FÞ; it is clear that J,F is so also.
As to the second claim, we know from the proof of Theorem 3 that a linear

operator from CðO;FcÞ to CðO;FÞ actually takes on values in CðO;FcÞ: Then,
qco X is just the restriction of X to CðO;FcÞ: It follows that L0 has the Korovkin
property. &

Example 1. It is easy to show that J alone does not have the Korovkin property in
the whole of CðO;FÞ: We can even take J ¼ CðO;FcÞ: Let Tn ¼ qco for all nAN
and T ¼ id: But TnðX ÞQTðX Þ for any XeCðO;FcÞ:

Theorems 3 and 4 can be particularized to functions whose values are (possibly
non-convex) sets.

Corollary 5. Assume that O is compact metric. Let HCCðO;RþÞ be a Korovkin

system for id in CðO;RÞ: Let LAKc be such that aBCL for some a40: Let S be a K-
operator such that SðLÞ ¼ L: Then, ðHLÞ,K is a Korovkin system for S in CðO;KÞ:
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Besides, if J is a Korovkin system for id in CðO;KcÞ; then J,K is so in CðO;KÞ:
Conversely, if L is a Korovkin system for id in CðO;KÞ; then L0 ¼ fcoX j XALg is

so in CðO;KcÞ:

The proof uses the identification KAK2IKAF:
In [18], we have given a method to show that Korovkin systems for dN

convergence are also Korovkin systems for some weaker types of convergence. This
can be used together with the ideas in this paper to extend Theorems 3 and 4 in a
similar way. Details are left to the reader.
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